
A Reflective Practice

illustration by Jeremia

Dominion

A Reflective Practice
03/03/2016

Author: Hien Quy Tran
Student Number: 543800

Semester: 5th Semester

Lecturers:
Prof. Susanne Brandhorst
Prof. Thomas Bremer
Oliver Langkowski
Sven Thomas Gorholt

Lecture: B 25 Praxisphase 1
Project: Development of a game with focus on agent based game mechanics

Content

1. Introduction to our Project ...1
	 1.1 The Development Team ..2
	 1.2 Concept ..3
	 1.3 Initial Idea ..4
	 1.4 Art Style ..5
	 1.5 Background Story ..6

2. Personal Goals and Milestones ..8

3. My Task Area ...9
	 3.1 Developing Gameplay Concepts10
	 3.2 Prototyping ...11
	 3.3 Making Changes to the Concept 12

4. Setting up the Foundation ...13
		 4.1.1 Main Base ...13
		 4.1.2 Game Entities ...14
		 4.1.3 Level Design ..16
	 4.2 Scaling Down ..18

5. Understanding Architecture ..19
		 5.1.1 Dual Cursor System20
		 5.1.2 AI Performer ...22
		 5.1.3 Animation ...23
		 5.1.4 Artificial Intelligence28
	 5.2 Giving Power to the Player31

6. Graphical User Interface ...32
	 6.1 Icons ...33
	 6.2 Reaction Screens ..34

7. Recap ...38

1. Introduction to our Project

This project marks the last and greatest project of our game
design studies.

Our task is to create a game within a three month period. The
minimum time budget per student is 600 hours. Making this
project being the biggest project with estimated working hours
of 1800 in total.

Having this in mind; we were able to stretch our scope a little
bit further than in previous projects. We were eager to finish the
project with a overall polished game, which we would consider
as “shippable”.

Other than the previous projects, we had 5 topics to choose from:
Agents, Extend 4, No Screen Game, Racing and Walden

The topic we chose for this group project is: “Agents”.

1

2

Hien Quy Tran
Game Design
Level Design
Programming
Character Animation Implementation
Graphical User Interface Implementation

Jeremia Oelschläger
Visual Development
Character Design
Environment Design
Graphical User Interface Design

“Lina” Yvonne Röser-Buchkremer
Visual Development
2D Animation
3D Animation

1.1 The Development Team (Quyrelina)

1.2 Concept

The focus of this project was to design a game with
main emphasis on “agent based game mechanic”.

An agent represents an entity, which is able to
operate by itself without constant player input.

It can be represented as an actual visible character as
in games, like for example “Lemmings”. It can also
be visual less apparent while managing the whole
economical system of a game, like for example in
games as “Sim City”.

While agents could be game entities which are
operating independently, they also could be game
entities which are operating in dependence to the
player or towards each other. This would be the case
with for example the flocking behavior of ants.

One of the main advantages of agent based systems,
is that the player can maneuver a high amount
of units without the need of steering each unit
individually, like for example in Real Time Strategy
games as “StarCraft”.

We decided on a system in which the player has to
handle a small amount of units, but in which each of
the units would have its own behavior and a rather
complex artificial intelligence system, resulting in
each unit to have individual personality.

3

“Lemmings“ by DMA Design (Rockstar North) in 1991

“SimCity“ by game designer Will Wright in 1989

ants using flocking behavior to bridge a gap in real life(background image:
StarCraft II by Blizzard Entertainment in 2010)

1.3 Initial Idea

Our game was aimed to be a top down isometric 4-player,
battle arena in which each player is in charge of a little squad.

Each squad member has its own statistics, which would result
in strengths and weaknesses, this again would ultimately
influence their decision making and therefore their behavior.

The player will not be able to steer the characters directly,
instead the player will be able to set the statistics, but also the
class and assign tasks to each squad member which will also
affect their behavior.

There will be two classes each squad member has to be
assigned to: worker or fighter.

A worker will be given tasks like scavenging for resources or
building an expansion, while a fighter will be given tasks like
searching for enemy units in order to attack them or defend
a specific area from enemies.

The player will be able to change the assigned tasks of a
squad member whenever needed, but the squad member
will be forced to return to the base or expansion whenever
a change of class is required. Meaning, that changing tasks
within a class is free of expenses, but changing tasks which
requires to change the units class may be uneconomical and
will cost time in which the unit will be especially vulnerable.

Winning Condition
There will be several ways to win a game. A player can win by being
the first one to collect 3 out of 5 targets, a player can outplay the other
players by being the first one to reach the target amount of resources or
a player can be the last surviving race by destroying enemy bases while
maintaining the own base intact.

4

concept art by Jeremia

1.4 Art Style

One of our preferences was to develop a game
which can be played against other players locally on
a shared screen.

The advantages of a shared screen are: good overview
over the whole map, the full usage of the entire
screen for every player and the convenient and easy
set up for gaming sessions and presentations.

Setting our game up as a local multiplayer was
important to us, because we wanted to add a
diplomacy system to the game mechanics. We hope
this diplomacy system would leverage the players
social interaction on the meta game layer.

We were eager to not only develop a fun, but
also good looking game, with great assets and
animations.

One of the main challenges was to find an art style,
which not only looks good on 2K HD resolution,
but would also provide a good overview over the
whole action for all 4 players on one single shared
screen.

(concept arts by Jeremia)

5

1.5 Background
Story

The background story of the
game is about four scientist,
who went mad because of their
dedication to science.

These mad science, are now
creating their little army of
minions to conquer the world.

Dr. ‘Dolly’ Dolbert, who created unsatisfied
clones of himself.

Dr. Vicki Frankensteiner, who tried to keep
people alive for too long.

Lady Bugoni, who studied bugs and
experimented with cross species.

Dr. Robert Asimov, who did not see any harm
in researching robotics.

All images are made by Jeremia.

2. Personal Goals and
Milestones

The last project “inVert”, was developed with Unity 5,
partly because I wanted to refresh my text based scripting
capabilities. The language we were using was C sharp. I was
very satisfied with the result and was able to prove myself,
that I am able to use the Unity engine with its text based
scripting still efficiently after having used visual scripting
for a while.

The visual scripting has helped me a lot to understand
things, which also applies to text based scripting and my
plan is to switch back to text based scripting eventually.
(Preferably C++) But for now, I think, that visual scripting
helps me to build up general scripting knowledge, which will
be applicable for both, either visual or text based scripting.

While programming the behavior of the enemies for the
third last project “cubed”, I got very exited about artificial
intelligence in games. The project was developed with
Unreal Engine 4 and I had the chance to get a little bit more
familiar with its components like the behavior tree and the
environment query system. But the time schedule was too
short to explore its full potential.

That is why, I chose to switch back to the Unreal Engine 4 for
this last project and dive into the AI components. My goal is
to understand the general principles of Artificial Intelligence
in games and eventually get good in programming them.

8
screenshot of a previous project: “cubed”

3. My Task Area

After our team have agreed on the topic “Agents”,
we decided that it would be most efficient, if
everybody is developing multiple gameplay
concepts by her/himself. We would then have
a pool of concepts and ideas, which we could
share, combine or redefine.

After having defined a gameplay concept, my task
as the only programmer was to start prototyping.

In order to be able to test the AI, I realized, that
I would need a consistent designed level, which I
started to develop and to block out in the engine
with brushes.

Then, I had to start programming all necessary
items like for example the agents and a cursor as
an interface to select and interact with the agents.
Also It was necessary to program an item, which
represents the base and enables the player to
spawn agents.

Also, I had to create several items, which the AI
could interact with.

Having this all setup, the next big task was to
implement their behavior.

Things like GUI implementation and animation
implementation had still to be done yet.

9
image: me working on the prototype in our studio

10

to reach a target amount of resources or a
player could be the last surviving race by
destroying enemy bases while maintaining
her/his own base intact.

Another important feature would be the
diplomacy system. This way players could
truce or betrayal each other, which would
leverage the social interaction within the
players and create some more emotional
gameplay.

Our main challenge is to get the right balance
between luck and strategy. I want the player
to watch her/his agents and cheer about
lucky events, while still thinking to have
enough control over the game progress to feel
responsible for the outcome.

I think with the right balance between luck
and skill, the game could stay exciting between
experienced and unexperienced gamers. Also
it could turn out to be a good causal game,
in which players do not need to be extremely
skilled or concentrated to exhaustion in order
to stay competitive and have fun.

3.1 Developing
Gameplay Concepts

Right at the beginning, we decided, that each
one of us should develop gameplay concepts
for the topic: “Agents” by her/himself.

My idea was to develop a top down isometric
4-player, battle arena game in which each
player is in charge of a squad.

Each squad member would have individual
configurable statistics like e.g.: speed, strength
and intelligence. Different priorities in the
statistics would result in different strengths
and weaknesses, which would again result
in different individual personalities and
behavior. A general fast unit, would maybe
have less stamina or strength and vice versa.

The player would not be able to steer the
characters directly, but instead set the class
and assign the tasks for each unit, which
ultimately also will affect its behavior.

While the player can assign the statistics, class
and tasks of an unit, the unit will maintain
independence to a certain degree and decides
on how to execute a certain task or when to
flee from dangerous situations.

There would be two classes the player can
choose from: worker and fighter, with each
having choice of two assignable tasks.

The worker would be given tasks like
scavenging for resources or building
expansions, while a fighter would be given
tasks like searching for enemy units in order
to attack them or defend a specific area in
order to keep enemies away. This would allow
the player to perform strategic actions and to
protect strategic locations on the map.

The player would be able to change the
assigned tasks of an unit whenever needed,
but the unit will be forced to return to the base
or expansion whenever a change of class is
required. Meaning, that changing tasks within
a class is free of expenses, but changing tasks
which requires to change the units class may
be uneconomical and will cost time in which
the unit will be especially vulnerable.

There would be several winning conditions: A
player could for example win by being the first
one to collect 3 out of 5 targets, a player could
outplay the other players by being the first one

3.2 Prototyping

Having a game concept which strongly relies
on Artificial Intelligence, was very new to
all of us and it seemed to be very important
to have a prototype as fast as possible. We
needed to figure out, whether and what makes
a game fun, in which the player’s dominant
activity is mainly watching, not interacting.
Also, I was very unfamiliar with AI systems
and needed to understand its capabilities as
soon as possible.

I started with a level generator, which would
provide me levels with random rooms and
corridors. I was hoping to be early confronted
with several level structures for prototyping.
Soon enough I realized, that it was too difficult
to optimize behavior in an ever changing
environment. This made me abandon the
level generator and start blocking out a new
persistent level.

It took me several attempts; I needed to
discard a lot of prototypes and had to rewrite
a lot of functions, in order to achieve a state,
where I finally had a basic structure, which
would provide all different requirements to
start prototyping with the AI.

11

the first prototype with the level generator

3.3 Making Changes to
the Concept

Our initial gameplay concept strongly relied on
the player to watch her/his units and make few
little changes in their statistics. The player would
not give direct orders or steer her/his units
anyhow directly.

The difficulty with observing as the core gameplay
element is, that unintended behavior will be
noticed straight away.

My conclusion is:

If a game is simulating simple behavior, the player
does not get unsatisfied as long the behavior is
consistently behaving in the same pattern. This
way the player can comprehend the logic and the
conditions, which led to this behavior in certain
situations.

On the other hand If a game is trying to simulate
smart and complex behavior, the player might
not be able to follow how the decisions for the
behavior are made. In order to not unsatisfy the
player, the behavior should always be considered
as reasonable in any situation.

And this is where our game did not deliver.
Because the behavior was tightly tied into the
statistics of the unit, it became very difficult for
the player to comprehend the decision making
part of the units behavior.

Because the player cannot predict the unit’s
behavior, the player is putting up expectations,
which the units behavior has to fulfill. As long the
behavior is keeping up with those expectations,
the player would take it as guaranteed, but anytime
it does not, the player would get unsatisfied.

To always guarantee a reasonable behavior, the
AI system has to be very complex. Very complex!
I was not aware of.

In order to avoid situations, in which the player
is unsatisfied about the units behavior, we
implemented the feature to assign tasks to units
specifically. This way, the player can overwrite
some of the units decision making part.

12

comprehendable:

not comprehendable:

4. Setting up the Foundation

I wanted to make sure, that all required assets are prepared, before I would tackle
the big task of setting up the AI. I wanted to finish up all these assets, so that I can
later completely focus on AI programming without needing to setup other assets.

Additional to that, I felt more comfortable to deal with the more familiar task first.
I have changed to Unity 5 Engine for the last project, and therefor have not been
using Unreal Engine for about 4 months.

4.1.1 Main Base

Before any unit is able to perform any action
in the game, the unit itself needs to be created
and placed into the world. That is why I
needed some sort of character creator and
placement tool for each player.

Creating Units
The player is then able to create a worker
with the press on the left shoulder button or
a fighter with a press on the right shoulder
button.

This character creation tool is representing
the main base. It also has 800 health points
and can be attacked by enemies. If the health
drops down to 0, the owning player is out of
the game and all her/his units die. This makes
it crucial to protect the main base.

13

Setup Statistics
As mentioned before, every unit has three
different character traits: speed, strength and
intelligence. The effect of each trait will be
explained at a later stage of this document.
There are three sliders (one for each trait) in
the base menu. The player can adjust those
settings by using the right stick. The higher an
unit is going to be skilled, the more resources
it will cost to be created.

Main Base GUI Panel (graphics by Jeremia):

In order to drop the collectible, the unit is
simply setting his own parameters back to
normal and spawns a new collectible in front
of him.

Each newly spawned collectible will call out a
function on the main bases, which counts the
amount of collectibles sitting in front of the
main base. If the number reaches 3, the game
will end.

Resources
Resources are having the same functionality
as collectibles, with only one difference, that
upon delivering to the main base, the unit
does not spawn a new one in front of the
main base, but rather increases the amount
of resources in the bank.

That is why resources, other than collectibles,
cannot be stolen upon successful delivery,
but will be cashed in immediately.

Mining Location
Resources are the only currency in the game
and need to be highly disposable. Because we
do not want them lying around, overlapping
each other and covering half of the map, we
decided to create locations, on which the units
can produce those resources by themselves.
Just as in almost every real time strategy
game, the units can see mining location, go
to those mining location and mine them.

The mining location holds a variable of the
information on how many resources are left.
On event “interact”, a function is called out,
which subtracts the amount of resources the
unit is taking and applies it to the parameters
of the unit. It also changes the appearance of
the mining location in order to display how
depleted the mining location is. If there are
no resources left to be taken, the mining
location will destroy itself.

4.1.2 Game Entities

While almost everything are game entities,
this chapter is all about the little ones. Those,
which usually only contain some variables
and a little amount of functions. Those
functions are being called by the unit which
interacts with them, they do not fire them by
themselves. In order to interact with those
Game Entities, I have created a Interface
Blueprint which allows me to specify these
objects as “interactables”. The units can then
call an unified event, named “interact”, when
interacting with them.

Collectible
As mentioned before, the winning condition
will be to collect 3 out of 5 collectibles, which
are scattered around the map.

As with all objects in this chapter; when an
unit interacts with this object, he will call
the “interact” function inside the object.
This function will set the parameters of
the interacting unit to make him carry a
collectible and then destroy itself.

14

Map Event Triggers
Map event triggers are totally functional. They
are not visible to the player, but can be sensed
by the cursor. Their only task is to activate
the functions of the other referenced game
objects. This way, they are multi-functional
and can be placed next to several different
map events.

Expansion
Expansions can be built by workers anywhere
on the map. They represent little stations, in
which units can cash in resources.

This makes them very strategical assets, which
the player can use to gain advantages on
territories, which are further away from the
main base.

15

The information they need to be fed with are:
the referenced map events(, like for example a
gate and a light) and invisible hacking spots.

Upon interaction with the map event trigger,
the unit will walk to the nearest hacking spot
and align its orientation with the orientation
of the hacking spot, which potentially faces
a representative mesh(, like for example
a terminal). The hacking spots contain a
variable about the default operation time to
activate the map events.

If the necessary time has passed, the map event
trigger will call a function in all referenced
map events, which will make them, for
example, open a gate or switching on a light. It
can be anything really.

4.1.3 Level Design

Because I figured, that it is rather difficult to evaluate the
behavior of the units on a random generated map, I decided, that
I would need a consistent environment in order to be able to
draw conclusions about their descision making.

That is why I started to sketch out a level on paper and used this
sketch to block out the level in the game engine.

This blocked out level is giving me the opportunity to test the
behavior on a consistent environment and helps Jeremia to
continue develop the visual appearance of the level, by replacing
my blocked out areas with his Assets.

The plan was to keep a consistent level design and to use just a
little bit of randomness for the target placements etc., in order to
raise the replayability. an early sketch of the Level Design on paper

the blocked out level in the engine

16

a redefined version of the first level

the blocked out new level layout

 the new level layout after Jeremia has been adding his assets

the final layout of the map

The first level layout helped me a lot to draw valuable conclusions
through testing and redefining.

Because we were aiming for a shared screen game, every bit of
unused space had to be avoided. Even the placement of walls
would result in unused space, depending on how thick they are.
Using planes to divide the space would not look right.

One of the major solutions for the final level layout was to use
differences in heights in order to separate areas from each other.
This way it was not necessary to place walls in between those
areas.

17

4.2 Scaling Down

The first part of the project, represents
the part within my comfort zone. The
main base and the game entities did not
represent a challenge to me.

But due to several gameplay changes
during development, I had to discard
several features of the game. One of the
biggest changes was the introduction of
assignable tasks.

The level design part was a huge problem
to be tackled. The whole level had to fit
onto one single screen with the maximum
resolution of 2K HD.

The major problem was the question of
scaling. To fit a large map onto a single
screen, we need to scale everything down.

But how large is large enough? And how
small can an unit be scaled down?

18

This was a huge problem, which made
us reconsider our concept of the shared
screen from time to time. We were not
able to predict whether we would be able
to fit everything onto one single screen
in a reasonable manner and whether this
concept would work at all.

Furthermore, it was quite difficult to
predict, what kind of level design would
work, without having the AI ready to
interact on it.

Although I had to redo a lot of work and
make frequent changes to my code, I am
very satisfied with the result of these tasks.

I think it was necessary to try out a lot
of different features in order to get to the
final conclusions and keep the good ones
and throw out the bad ones.

We also experimented with different
angles of projection. One idea was to
develop this game as a table surface game.
We dismissed this idea, because it did nor
provide enough benefits to balance out
the complicated setup.

The shared screen concept in
combination with the 2K HD resolution
was representing a though constraint and
I am glad, that we figured out a solution.

5. Understanding
Architecture

There is a differentiation between: what is
performing the action and what is controlling
the performer, through which controlling
device.

The performer, could be the representative
game entity, the avatar for example.

The controller, could be a human being
controlling this avatar through any input
device, but also an non human system, like for
example an AI could be the controller.

This comes especially handy, whenever the
controller wants to change its performer, like
for example in racing games, where the player
(her/his brain) chooses between different
performing car models before the race, or like
in first person shooters, when the performer
dies and a new performer has to be assigned to
the controller in order to jump right back into
the action.

Even more so, it enables easy setup to let AI
control the same type of performer, as a human
being would. This comes handy if, for example
empty slots need to be filled up with bots.

All these mentioned cases do not apply for our
game.

Each player has exactly one performer, and
this one performer cannot die nor will the
player be able to change it. The performer of
the player in our game is her/his cursor, which
he can be used to select units or objects on the
map and to change their state.

The cursor will never be possessed by any
another human or AI controller. The units
themselves, which are also performer, are
starting off with an AI controller, which will
never be changed and they will never be
possessed by any human controller.

Although it was not necessary for this project,
it wanted to keep the general structure of
performer, controller and controlling device
right, for best practice.

Those terms can get quite confusing and are
by no means standardized! Like for example in
Unreal Engine 4 the controlling device is being
called controller.

Those terms are purely laid out for myself. I
found this to be the easiest way to describe the
architecture and structural dependencies.

19

5.1.1 Dual Cursor
System

Since the cursor is the player’s real performer,
it was important to make it feel very natural
and easy to use. It took me several attempts
to get the cursors controls to this final state.
Each player gets two different cursors. One is
represented as a circle on the floor and one is
represented as a triangle above the floor.

Selecting
In order to give specific commands to specific
units, the player needs to be able to select
those specific units.

This can be done with the circle cursor, by
using the left analog stick of the game pad. To
select a new unit, the player needs to pull the
stick into the direction of the desired unit and
the circle cursor will automatically snap onto
the next unit.

Pulling the analog stick into a direction will
result in a corresponding vector. A function
calculates the vectors from the current unit
to all other units and compares it with the
vector of the analog stick. If the deviation is
within an acceptable range, it will save the
concerning unit into an array. Having an array
of all units in acceptable direction, the next
step is simply to pick the one out of the array,
which is closest to the currently selected unit.
After that, the array needs to be reset and a
cool down of less than a second is initialized
to keep the cursor from skipping units.

At last, the cursor’s location will be
interpolated towards the newly selected unit,
which makes its snapping visible.

20

Assigning Tasks
Having the desired unit selected, the player is
able to assign specific tasks to the unit with
the triangle cursor.

In order to snap the triangle cursor on relevant
tasks on the screen, the player needs to push
the right analog stick into the direction of the
desired object. Just as the circle cursor, it will
automatically snap onto the next object.

In order to command the unit, which is
selected by the circle cursor, to go to perform
a task on the object, which is selected with
the triangle cursor, the player simply needs to
pull the right shoulder trigger.

Pulling the left shoulder trigger will result the
unit to cancel its task and to hold the current
position.

Upgrading, Selling ...
An unit, which is selected with the circle
cursor, can also be upgraded or sold.

A simple press on the top, left or right face
button of the game pad will subtract the
total resource amount of the upgrade cost
and upgrade the unit by one in either speed,
power or intelligence.

Toggle Modes
To get back to the main base mode and create
additional units, the player can either move
the circle cursor to the main base by pulling
the left analog stick into the direction of
the main base or simply use the special left
gamepad button to toggle between those two
modes.

21

5.1.2 AI performer

Before setting up the Artificial Intelligence, I need
to set up its representative. Meaning in this case,
the performing body which can execute tasks in the
environment.

I have been setting up two different blueprints,
representing the units. One for the worker class and
one for the fighter class.

The main function of these blueprints are to provide
the AI controller a visible body which has a location
in 3D space and shows their activity through visuals
like for example through animations and icons.

These bodies are not only visible to the players, who
are controlling the cursors, but are also senseable
to other AI controllers, which are also controlling
other bodies in the game.

Because the units can interact with each other,
their bodies are also carrying information about,
their functionalities. Just as with the “interactables”,
I have set up a Blueprint Interface for characters.
This Interface adds unified events like for example,
“receive damage” and “get robbed” to those bodies.

22

5.1.3 Animation

Another Task of mine was to implement
the animation assets into our game. That
involved setting up the Animation Blueprints
and Animation Blendtrees.

Animation is important to give the player
visual feedback about the state of the game.
It is necessary to communicate and visualize
the current activity of the units.

To guarantee a smooth transition from idling
to running, I was setting up one dimensional
blend spaces with loopable animation assets
of idling, walking and running.

Depending on the velocity of the unit it
would perform a scaleless blend from idle to
walk and from walk to run.

23

Because sudden changes in the velocity were causing little jumps while blending,
I was feeding the blend spaces with an interpolated value of the velocity.

character design by Jeremia
24

This is an example of the
worker units State Machine.

A State Machine regulates
the timing of the transition
from one animation state to
another.

It observes whether
predefined conditions for
a transition are matched
and performs the transition
from one state to another if
necessary.

character design by Jeremia

25

In order to get the fighter units
to play the walk and the attack
animation at the same time, I had
to setup Montage Blueprints.

These Montages can be fired and
stopped via Blueprint...

26

... and stiched onto an active pose,
beginning from a dedicated bone.

This way, the fighters final pose can
receive the locomotion pose of the
state machine while performing the
attack animation for the upper body.

character design by Jeremia 27

5.1.4 Artificial Intelligence

After having setup the representative body for the units,
I now needed to feed it with a behavior.

For that I needed to setup an AI Controller and a
Behavior Tree with all its Services, Decorators and Tasks.

According to my previous example the representative
body would be the “performer”, while the behavior tree
would be the “controller” and the AI controller would be
the “controlling device“

This is where it gets a little bit confusing:

The sensing component enables an AI to sense his
environment through vision or hearing. Unlike with
human players, the AI does not look at the screen,
but rather senses the surroundings out of the bodies
perspective. Nonetheless the sensing component is part
of the AI controller.

28

The AI Controller does not only possess the body and
runs the behavior tree on it, but also contains the sensing
component. With this sensing component, the AI is able
to sense specific objects in its surroundings. In this case,
the sensing component can sense all the intractable
game objects.

Every sensed object is being categorized and analyzed
in order to figure out, whether it is relevant and should
influence the behavior.

In this example a worker is sensing a fighter:
--> 	 is this fighter one of ours?
-->	 is this fighter already occupied with something?
-->	 am I already threatened by another fighter and
	 if so, is this other fighter closer to me than the
	 sensed one?

If any of these checks are answered with yes, then the
sensed fighter will be ignored. If all of them are answered
with no, then the sensed fighter is a enemy fighter, which
has no other occupation right now and is closer than
any other threatening fighter.

This relevant fighter information will then be sent
to the behavior tree and saved into a variable. Those
variables, which are being set by the sensing component
in combination with variables which are set by the
player, when assigning tasks, are forming different
combinations, which can result in different outcomes
for the behavior.

In this example we have a fighter with different
conditions setup for entering a certain behavior:

fighter sensed relevant enemy worker
--> go to enemy worker

fighter sensed relevant enemy fighter
--> go to enemy fighter

fighter is low on health
--> hide

Having these conditions and behaviors ready, we can
now setup the priorities for each branch. In this example
the lowest condition would have the highest priority,
whereas the second lowest has the second highest.

Having these priorities setup will let the behavior tree
decide which behavior is more important.

In our example: If the fighter senses an enemy worker
and an enemy fighter at the same time, he would
approach the enemy fighter, due to its higher priority. In
any case, if he is low on health he would flee, since it has
highest priority.

There are way more AI functionalities in UE4 and the
setup of the AI gets way more complex, but describing
the whole behavior setup I did for this game would go
far beyond the scope of this paper, really.

29

the final Behavior Tree of the fighter unit

30

As an example:

a fast unit is good for collecting resources,
while a smart unit is more efficient unlocking
doors. In this scenario, the fast unit might want
to reach resources which are behind a locked
door. Depending on how many other units are
available he would need to either call for the
most efficient other unit or unlock it himself. In
order to calculate the most efficient decision, it
would not be just enough to compare the stats
of all units. There are several variables which
have to be taken in account, like for example:
What is each unit currently doing, how far away
from the door is each unit, how long would it
take each unit to unlock the door. And again,
if another unit would drop its task to open the
door, should this task be taken over by some
other unit?

From this point, the whole chain of
dependencies would loop around again.

Because it became to complicated to quickly,
we had to implement a feature, which gives the
player the power to make decisions for her/his
units.

5.2 Giving Power to
the Player

I am very satisfied with the result of the
cursors, but creating them took way longer
than expected. I have heavily underestimated
the required time to get this running as it is
now.

The real difficulty of this project came with
setting up the units and their behavior. It took
me quite a while to get to know how to use the
Behavior Tree and the Environment Query
System of the Unreal Engine 4.

During development, I had to realize, that the
scope I have been setting for myself in terms of
the AI system was too large. This project is the
first time, me being confronted with creating a
complex AI system.

I did not need to start from scratch, because the
Unreal Engine 4 comes with a lot of essential
AI components (Perception, Behavior Trees,
Path-finding System), but also advanced AI
components (Environment Queries).

Having this in mind, I simply underestimated,
how complex AI systems can get and how
difficult they can become to manage, even with
all the components ready out of the box.

31

The tools for creating such an advanced AI
were quite unfamiliar to me and I had to spend
most of my time figuring out how all these
different components work.

A lot of things I have done were worst practice.
But, even this helped me a lot to understand
more about what I am actually doing and why
it is not practical or even totally wrong.

Most of the time, I have been working on this
project, went into optimizing AI and then
discarding the whole work again. But right now,
I am at the point, where I think, that I really
understand the concept of the AI components.

I realized, that the initial idea of creating an
AI, which would be mostly independent from
the player and makes smart decisions, was
too ambitious as the first project involving
advanced AI.

Especially, because we included a stats system,
which gave each unit own unique strengths
and weaknesses, the major problem was the
dependencies of decision making. In order to
make smart decisions, the AI not only had to
always evaluate its own capabilities, but also
the strengths and weaknesses of the others and
constantly communicate with them.

6. Graphical User
Interface

The Graphical User Interface provides crucial
information about the game state. Because
the screen is shared by 4 players, we had to
figure out how to implement the graphical
user interface without using up too much of
the screen. We decided to place one info panel
for each player next to her/his base and to use
icons and health bars only when necessary.

While Jeremia was creating all the graphical
assets, my task was to implement their
functionality.

For that I was using the UE4 Widget Blueprint.
While setting up the bindings for the UI
elements, I was confronted with two major
different setups. Either to let the widget look
into the necessary locations of the code and
react accordingly, or let different bits of codes
update the widget whenever needed.

I figured, that the Widget would check the
variables in different part of the codes for
every frame, even when no changes appeared.

The two options as an example for displaying
the amount of game currency available:

1.) Widget goes to the referenced main base
and reads out the variable for the game
currency. (This happens every frame)

2.) Widget has a variable for game currency.
This variable is updated to mirror the game
currencies variable of the main base whenever
necessary. (This update is called, when the
player gains or spends game currency)

Because I was afraid, that the first option
would have an impact on the performance, I
decided to let the code overwrite the variables
in the Widget only when needed.

Everytime an action is performed by the
player, which would change the amount of
currency she/he has, a function to update the
widget is necessary to reflect the change.

32

33

6.1 Icons

In order to display the health and interaction
progress of each unit, we decided to use icons,
which are shown next to the concerning unit.

This is realized by adding a widget component
to the units blueprints.

This widget component contains items for hit
points, health bar and a progress circle.

These items are then made visible when needed
and are fed with variables, like for example the
hit points, the current health or the current
progress of the current interaction.

The health bar for example is only visible if
the unit does not have full health. This way
we emphasize damaged units and avoid
spamming the screen with full health bars.

I would not do it this way next time anymore,
because of several reasons.

It is very error-prone: every time a feature,
which is anyhow connected to the GUI, is
added or removed, you have to think of,
where and when an GUI update is needed to
be called. This is very tedious and very easy
to forget.

Nonetheless, I sticked to the 2nd method
for this project. It went well and the game is
calling out all necessary updates reliably. But
I am sure, that with an even more complex
economical system it can get quite confusing
to figure out, which action will influence
which parts of what GUI. Not to mention in
a multiplayer networkg game in which the
clients can influence each others GUIs.

6.3 Reaction Screens

Unlike other real time strategy games, in which each
player is handling a rather large amount of units,
the players in dominion are handling a relatively
small amount of units in comparison.

This also means, that every loss of an unit has a
higher weight.

We wanted to emphasize that by giving the players
strong feedback about the happenings on the screen.

Because we think games are all about feedback, we
created screens, which are appearing from time to
time, showing the reaction of the scientists.

My task was the implementation of those. I realized
it with materials, in which I set the frame of the
animation through an parameter by runtime.

34

Characters by Jeremia, Animations by Lina

from early prototype
36

37
to finished game

38

6. Recap

Compared to previous projects, this turned out to be the most
complicated one so far. I have tremendously underestimated
the workload of complex AI systems. It took me a lot of time to
get used to the AI components of Unreal Engine 4 and I needed
numerous alliteration steps.

Nonetheless, I feel like I have learned a lot about AI programming,
which is most important.

I have the feeling, that I have learned a lot about game AI and
that I have a much better understanding about it now. I think
that this knowledge will come very handy for future projects.

The concept of the game has changed a lot during development.
Features had to be replaced or removed. One of the major
changes was the introduction of the assignable tasks. I think,
that only through these several alliteration processes, it was
possible to get into that final stage.

I have to learn to set the scope right next time, in order to get
my work/life balance right. The crunch time was getting very
tense and I want to avoid that for future projects.

In overall, I am very satisfied with the outcome of this project.
The game is fun and helped me a lot to understand the basics
of game AI.

I am very interested in creating a server/client network game
and a mobile game for future projects.

Jeremia is happily working in our studio.

my workplace :)

