Solving The Rubik’s Cube

Date: 11/11/2014
Student Number: 543800

Lecture: Game Design
3rd Semester
Project: Development of a Modular Game in Unreal Engine 4

Those colliders are then being linked with a custom material. The
material allows the colliders to be customized in their appearance.
Me for example, I was setting the material to gray translucent.

In order to make those colliders movable, I decided
to create a cursor. The cursor is being spawned on
top of the Rubik’s Cube and the area, in which it is
allowed to move, is adapting to the size of the Rubik’s
Cube. Each collider for the rotation is then following
the cursor along one axis.

In order to avoid inconsistencies, I needed the colliders to snap to the grid of the
RubiK’s Cube, instead of following the cursor seamlessly between the cube rows.

Having the grid snapping done, I was
then able to group all cubes togeth-
er, which are overlapping the col-
lider, by attaching them to a “Target
Point”, which is instantly spawned in
the center of the Rubik’s Cube before
every rotation.

The attached cubes can then be rotated around their “Target Point” and
can finish their rotation with a snapping to a 90° rotation. The “Target
Point” is then being destroyed in order to detach the cubes again.

» ma BP_Rubik > EventGraph

Adjust_Button_Configuration_To_Camera_OrientatioBet_X_Rotation

Attach_To_¥Y_Detector

—F =
= o

Initiate_¥_Rotation Decrease_¥_Rotakitake_Rotation

oy

Comment

e

Applying Materials

Approximate Working Hours: 2

ma BP_Rubik » EventGraph

Delete_Inner_Cubes

Apply_Materials_Add_To_Array

e

dér to be able to give every single cube of the Rubik’s Cube six different materials (one for each face), we had
eate a cube in a 3D program and link each face with a LOD ID.

is allows the Unreal Engine 4 to distinguish between the faces of one mesh and allowed us to apply different
naterials to each face of each cube by addressing the materials through the IDs.

For that matter, I have created six different materials with different color values, which are assigned via script to

the faces of the cubes after they have been spawned. . L i
1 B | - Banl SR | B
a Eaan S N e .!_ . —I_ :

Creating a Game Manager

Approximate Working Hours: 12

Detault

Setting Examples

Rubik’s Size: 6
Cubes Scale: 1.5
Show Marked: Rows: true

Two Row Mode: false
Inverse Rotation: false

11

Rubik’s Size: 6
Cubes Scale: 1.5
Show Marked: Rows: true

Two Row Mode: true
Inverse Rotation: true

12

Adding a Playable Character

Approximate Working Hours: 6

Although there was already a lot of modification op-
tions to customize the Rubik’s Cube, I was still miss-
ing essential functions.

In order to place or attach any game object onto the
surface of the Rubik’s Cube, I decided to add “Spawn
Points” on top and bottom of the rubiks cube, which
would allow us to spawn any arbitrary game object
for prototyping purpose.

Having a functional Rubik’s Cube, I decided to add a
placeholder playable character for prototyping purpose.

It was important to me, that the camera remains freely
placeable, so that different view angles could be quickly
tested while prototyping. Because of the freely movable
camera, I needed the controls of the playable character
to be orientated in dependency of the orientation of the
camera.

The controls for movement and rotation are now config-
uring themself automatically in order to keep the controls
always consistent no matter the position and orientation
of the camera.

13

Adding an Enemy

Approximate Working Hours: 2

To test how to attach game objects onto the surface and then
detach them again, I have added a placeholder enemy, which
destroys the playable character on overlap.

It is attaching itself to the Rubik’s Cube by shooting a “Line
Trace” to the direction of the Rubik’s Cube and would stay
attached until it gets rotated to the top surface.

Cooperatively, I have added with Ragnar and Sam a script to
the enemy, which makes it slowly move towards the player.

14

