
Solving The Rubik’s Cube

A Reflective Practice

Date: 11/11/2014
Student Number: 543800

Lecture: Game Design
3rd Semester
Project: Development of a Modular Game in Unreal Engine 4

by Hien Quy Tran



In order to have a basic structure from where I could start 
working on the functionalities of the Rubik’s Cube, I decided 
to spawn the base of the Rubik’s Cube itself via code by using 
three “For Loops”, one for each dimension.

Approximate Working Hours: 1

Constructing the Base

1



The advantage of spawning the Rubik’s Cube via code, compared to 
the method of stacking the cubes together by hand, lies in the easy 
customization ability. Variations like the number of how many cubes 
the Rubik’s Cube should consist of or the scale of the individual 
cubes are easily modified by changing some variables.

2



Grouping and Rotating Rows
Approximate Working Hours: 18

3



Having the basic structure of the Rubik’s Cube with its individual cubes, the next task 
was to find a solution of how to group a row of cubes together in order to rotate them. 
For that, I spawned two colliders, which are adapting to the width of the Rubik’s Cube.

4



Those colliders are then being linked with a custom material. The 
material allows the colliders to be customized in their appearance. 
Me for example, I was setting the material to gray translucent.

5



In order to avoid inconsistencies, I needed the colliders to snap to the grid of the 
Rubik’s Cube, instead of following the cursor seamlessly between the cube rows.

In order to make those colliders movable, I decided 
to create a cursor. The cursor is being spawned on 
top of the Rubik’s Cube and the area, in which it is 
allowed to move, is adapting to the size of the Rubik’s 
Cube. Each collider for the rotation is then following 
the cursor along one axis.

6



The attached cubes can then be rotated around their “Target Point” and 
can finish their rotation with a snapping to a 90° rotation. The “Target 
Point” is then being destroyed in order to detach the cubes again.

Having the grid snapping done, I was 
then able to group all cubes togeth-
er, which are overlapping the col-
lider, by attaching them to a “Target 
Point”, which is instantly spawned in 
the center of the Rubik’s Cube before 
every rotation.

7



8



In order to be able to give every single cube of the Rubik’s Cube six different materials (one for each face), we had 
to create a cube in a 3D program and link each face with a LOD ID.

This allows the Unreal Engine 4 to distinguish between the faces of one mesh and allowed us to apply different 
materials to each face of each cube by addressing the materials through the IDs.

For that matter, I have created six different materials with different color values, which are assigned via script to 
the faces of the cubes after they have been spawned.

Applying Materials
Approximate Working Hours: 2

9



Because we had not defined our game me-
chanics yet and are still about to experi-
ment and try to figure out what kind of 
game to design based on the Rubik’s Cube, 
I thought it would be handy to be able to 
customize and adjust the Rubik’s Cube in 
many different ways.

In order to guarantee an easy and quick 
customization process, I have created a 
“Game Mode Blueprint”, which gathers all 
modifiable variables for better overview 
and easy access.

I have then implemented further modifi-
cation options for the Rubik’s Cube which 
are selectable and adjustable through this 
“Game Mode Blueprint”.

Creating a Game Manager
Approximate Working Hours: 12

10



Rubik’s Size: 6
Cubes Scale: 1.5

Show Marked: Rows: true

Two Row Mode: false
Inverse Rotation: false

Setting Examples

11



Rubik’s Size: 6
Cubes Scale: 1.5
Show Marked: Rows: true

Two Row Mode: true
Inverse Rotation: true

12



Having a functional Rubik’s Cube, I decided to add a 
placeholder playable character for prototyping purpose.

It was important to me, that the camera remains freely 
placeable, so that different view angles could be quickly 
tested while prototyping. Because of the freely movable 
camera, I needed the controls of the playable character 
to be orientated in dependency of the orientation of the 
camera.

The controls for movement and rotation are now config-
uring themself automatically in order to keep the controls 
always consistent no matter the position and orientation 
of the camera.

Adding a Playable Character
Approximate Working Hours: 6

Although there was already a lot of modification op-
tions to customize the Rubik’s Cube, I was still miss-
ing essential functions. 

In order to place or attach any game object onto the 
surface of the Rubik’s Cube, I decided to add “Spawn 
Points” on top and bottom of the rubiks cube, which 
would allow us to spawn any arbitrary game object 
for prototyping purpose.

13



To test how to attach game objects onto the surface and then 
detach them again, I have added a placeholder enemy, which 
destroys the playable character on overlap.

It is attaching itself to the Rubik’s Cube by shooting a “Line 
Trace” to the direction of the Rubik’s Cube and would stay 
attached until it gets rotated to the top surface.

Cooperatively, I have added with Ragnar and Sam a script to 
the enemy, which makes it slowly move towards the player.

Adding an Enemy
Approximate Working Hours: 2

14




