
The

Creation of a VR Game
_ _ _ _ _ _ _ _
SPACE ORBS

Realisierung eines VR-Prototypen mit Fokus auf die Übersetzung
von Beschleunigungen aus der Realität in eine Bewegungssteuerung

Hien Quy Tran
Wissmannstraße 47

12049 Berlin

Bachelor Thesis
Game Design
HTW Berlin

Matriculation number: 543800
Berlin, September 2017

Supervisors:	 Prof. Thomas Bremer
		 Prof. Susanne Brandhorst

The

Creation of a VR Game
_ _ _ _ _ _ _ _
SPACE ORBS

Creation of a VR Game
with emphasis on motion controls

Hien Quy Tran

Abstract

This documentation is part of
my bachelor theses: “Creation
of a VR Game with emphasis
on motion controls”. (original
title in German: “Realisierung
eines VR-Prototypen mit
Fokus auf die Übersetzung
von Beschleunigungen aus
der Realität in eine Bewe-
gungssteuerung”)

It will give you an insight of
what my motivation was and
where my idea came from to
create this prototype. Fur-
thermore, it will show you
my working process and go
into more detail of each game
entity with all their reiteration
steps.

Throughout this document
I will not only show you the
pitfalls I have fallen into, but
also tell you about the lessons
I have learned.

Please keep in mind, that this
documentation only reflects
a fraction of my actual work.
Majority of the time was
spent in crafting the proto-
type in the Unreal Engine 4
Editor.

The following documentation
will not describe any gameplay
of the game. It will focus on
describing the creation of the
game. If you haven’t done so
yet, please consider to play the
game before reading.

Table of
Contents

Introduction
	 Motivation
	 Goals
	 Technology

Work Process
	 Ideation & Research
	 Planing & Preparation
	 Execution
		 Pawn
		 Pickup Object
		 Orb Spawner
		 Base Station
		 Obstacle
		 Mover
		 Volume
		 Widget
		 Stage
		 Holomap
		 Game State
	

01
03
04
05

07
09
10
12
12
12
14
15
15
16
17
17
17
18
18

Review
	 Pitfalls & Best Practices
	 Lessons Learned
	 Conclusion

Appendix
	 Table of Figures
	 Sources
	 Declaration on Oath

Acknowledgments
	 My Sister
	 Special Thanks

21
23
24
25

27
28
29
31

33
35
37

Introduction
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Motivation · Goals · Technology

Introduction - Motivation																

 	02

~ Motivation ~

It was the first time for me,
to get in touch with game
development, when I started
to study game design. Never
have I written a single line of
code, nor did I know what
else to be expected of this
profession. I had no clue
about, what a game designer
is and where to place myself
among all the various profes-
sions within game develop-
ment.

It was a long path to walk in
my career as a game designer.

Looking back at my studies,
I have been learning a lot. In
fact, thanks to my education,
I have been able to work as a
part time game designer for
about a year now and was
able to gain a lot of comple-
mentary work experience.

I see this project as a resem-
blance of what I have learned
and achieved over the course
of the last three and a half
years and I am aiming to syn-
ergize the knowledge I have
gained from my studies with
the experience I have gained
from work.

I am very interested in virtual
reality and especially mixed
reality. I believe that these
technologies will shape the
future of the media landscape.
The technology is quite new,
but leaves us developer a lot
of room to explore. I am very
interested and curious about
its potential and how it can
be utilized. I am sure, that we
are just seeing the tip of the
iceberg and that we are still in
the process of comprehending
its possibilities.

Introduction Introduction - Motivation

																	 03

~ Goals ~

As a student, I was mainly fo-
cused on exploring innovative
gameplay mechanics, while
leaving boundaries aside. The
project I am working on as a
part time game designer on
the other hand is bound to a
rigid structures and a clean
development. This being said,
the code base of my past stu-
dent projects have been pretty
messy in comparison. This
would have not allow a for
good workflow in a project
with a team size of roughly
hundred people.

My goal is to create a virtual
reality game, which is not
only appealing in its design,
but is also set up in a way,
that the content is modular
and easily expandable. For
that matter, it is essential
to carefully plan and set up
a clean foundation for the
framework. Each and every
aspect of the game has to be
implemented as a single game
entity. My hope is, that this
will result in high stability
and great expandability of
the game, as well as a solid
foundation for further de-
velopment. I believe, that if
the foundation is set up in a
correct way, content gener-
ation can be very efficient.
With this believe, I am aiming
to create content which allows
for roughly thirty minutes of
playtime.

Introduction - Goals																

 	04

~ Technology ~

As mentioned before, I am
very curious about the future
of virtual reality and believe,
that it will be a huge driving
factor for the industry.

I have been playing around
with the HTC Vive and the
Oculus Rift. While the HTC
Vive is superior in image
quality and device tracking
across a whole room. The
Oculus Rift is superior in
comfort and setup. Although
I really like the touchpad of
HTC Vive’s motion control-
lers, I personally prefer the
ones from Oculus Rift due to
its more ergonomic design.

Looking at my game, all
advantages of the HTC Vive
would not have a great im-
pact and I therefore preferred
to choose the one which is
sufficiently tailored towards
my needs.

During my studies I was
mostly developing with the
Unity and the Unreal Engine.
Both Engines have their own
advantages, but because I also
work with the Unreal Engine
at work, I feel much more
familiar with it by now. That
is why I chose the Unreal
Engine 4 over Unity 5.

Other software aiding me
with my project are Autodesk
Maya, Adobe Photoshop and
Ableton Live.

	 Introduction - Technology

																 	 05

Work Process
_ _
Ideation & Research · Planing & Preparation · Execution

Work Process - Ideation & Research															

 	08

~ Ideation & Research ~

The Hardware should not be
redundant.

Meaning, that the game
should not be adaptable into
a desktop game. For that, it
has to make good use of the
freely maneuverable stereo-
scopic camera and the motion
controllers.

To get some inspiration, I
took a look into some of
the available virtual reality
demonstrations. I was espe-
cially pleased by the high pro-
duction value of the Oculus
Rift Tutorial and showed it
to some of my friends. While
most of them had their first
virtual reality experience, it
became pretty apparent, that
even those, who are not play-
ing video games on a regular

basis, did not experience any
difficulties in interacting with
the virtual environment.

Conventional video games
requires the player to cog-
nitively map specific action
options to corresponding
buttons or even button com-
binations. The use of motion
controllers allows for an input
option, that is more similar
to the actions of every day
life. Simple tasks like reaching
out for objects, grabbing and
dropping them are very natu-
ral to perform. The simplicity
and easy adaptation of the
controls made virtual reality
an enjoyable experience for
everyone. It was important to
me, to maintain this condi-
tion and to not end up with a
hot wire game.

The execution of the interac-
tion should feel natural.

Having this in mind and
while observing my friends,
I noticed, that throwing stuff
around was a popular thing
to do in the virtual reality.
Furthermore, it was often the
first item on the to-do list of
things that have never been
asked for.

Throwing objects is interest-
ing in many ways. In its core,
it is a seemingly easy action,
but it gets hard real quick, if
asked to throw an object in
a consistent manner. I can
throw a basket ball, but can
I hit the basket? Too many
variables are contributing
towards the end result, so that
even professional basket ball

players are unable to predict
their shot with 100% accura-
cy. Most of those variables,
including angle and force, are
also replicable in virtual reali-
ty. But I did not want to create
a hit the basket simulator.

It should be about something,
that is almost impossible to
recreate in real life.

One of the great features of
virtual reality is the possibility
to set up conditions, which
are difficult to be set up in
the real world and let’s face it:
gravity was always an annoy-
ance in sports class.

Work Process Work Process - Ideation & Research

																	 09

I have played a few games, in
which gravity is key element,
but there is one in particular,
which is standing out:

‘Sagittarius’ by George Prosser

It is a turn-based competitive
2D cosmic archery game,
which I personally like, be-
cause of its minimalistic but
strong game design. I also
looked into other more pop-
ular games, like for example:
‘Angry Birds Space’ by Rovio.

Inspired by those games,
I started to sketch out my
game.

- It is a single player experi-
ence.

- The players main activity is
trying to hit a specific target
by throwing object towards it.

- There are numerous of differ-
ent objects to throw and they
all behave differently.

- To hit the target, the player
needs to understand and solve
the puzzle like level.

- The player progresses
through levels, but can also
fail and end the game early.

- It has a system, that allows
for competitive play by setting
high scores.

- Planing & Preparation

To give me a head start on
this time limited project, I
decided to build my game on
top of the Unreal Engine’s
Virtual Reality Template.

Work Process - Planing & Preparation				

 										 	10

This template already includes
a pawn with functions to
grab objects, release objects
and teleport itself. That came
handy, because I only needed
a pawn with the function to
grab and release objects. I
remapped the buttons to my
preference and adjusted some
of the force feedback effects. I
then deactivated the teleport
function, since it was not
needed. Moreover, I was able
to find little squared boxes in
the template, which could be
grabbed and released. I was
about to create objects which
share exactly this trait. In-
stead, I was able to use these
boxes as the parent pickup
object class. Everything, that
can be picked up will simply
inhered exactly this trait from
this class. I then sketched out
the overall game loop and
listed all required game enti-
ties and their dependencies.

Before I continued to create all
the game entities I was setting
up a revision control system. I
cannot stress out enough, how
important this step is.

It usually does not take more
than one hour to set it up
and can spare a lot of time
in further development. To
be able to jump back to any
previous revision can save a
lot of work.

It also helps the user to docu-
ment all the changes made. I
chose Perforce as the revision
control system of this project,
because I am fairly familiar
with it and is greatly support-
ed by the Unreal Engine 4.

	 Work Process - Planing & Preparation

																	 11

~ Execution ~

This section will go into more
detail of each game entity.
It will discuss, whether and
why it does inherit from other
classes, as well as explain its
main functions. Please keep
in mind, that some of the
examples will be simplified, in
favor of readability and com-
prehensibility. I believe it is
more important, to be able to

follow the general idea, than
not being able to comprehend
anything due to the petty
listing of all details.

Pawn

The pawn I am using is the
one from the Virtual Reality
Template. It already comes
with the function to grab
and release objects, as well as
the option to teleport itself
to another location. While
the teleport function can be
disregarded, since I removed
this function from the pawn,
it might be of interest to know
how the grab and release
functionality works.

The pawn has virtual hands
attached to it. These hands are
mimicking the position of the

real hands by tracking and
following the motion control-
lers. These virtual hands have
colliders around them. If they
overlap with colliders of other
game objects, they will check,
whether the other object is a
pickup object. If it is a pickup
object, it will attach this other
object to the hand on button
press and hold. On attach it
also deactivate the attached
objects physics simulation.
Releasing the button will re-
sult in detachment and phys-
ics simulation reactivation of
the object.

Work Process - Execution																

 	12

	 Work Process - Execution

																	 13

Pickup Object

A pickup object is simply an
object, that is marked as an
object, which can be attached
to the hand. I used this pick-
up object to create the base
class of my orbs.
		

Pickup Object: Default Orb

This default orb class inher-
its all traits from the pickup
object. I then added addi-

tional traits, which are valid
for all upcoming orbs. For
the audiovisual appearance, I
added a sphere mesh, a par-
ticle system for the trail and
a sound, which is depended
on its velocity. For its flying
behavior, I then overrode the
physics settings and deac-
tivated gravity. I added two
main functions to the orb:

Activate - sets the orbs state
to active and add a reference
of itself to a global orb base
class array.

Destroy - removes itself from
that array and destroy itself
while spawning an explosion
with sound.

The Activate function is
called after the player has
thrown the orb, while the De-
stroy function can be called
by other game objects, that
want this orb to be removed
from the game. This can be
the case when obstacles detect
a collision with this orb.

Default Orb: Stop Orb

The stop orb has an addition-
al function, which sets the
velocity of the orb to zero. It
can be called by the pawn.
The pawn remembers every
latest thrown actor. On ability
button press it will call exactly
this function and bring this
orb to hold.

Work Process - Execution																

 	14

Default Orb: Thruster Orb

The thruster orb works quite
similar. The difference is,
that its ability function will
increase the current velocity
by multiplying it with a factor
as long the ability button is
being hold down.

Default Orb: Destroyer Orb

The destroyer orb has an
extra function, which calls the
destroy function through a
blueprint interface. Blueprint

interfaces allow game objects
to call other game objects
functions without having to
cast them, nor to know their
class. They are especially
useful in order to call wide-
ly generic functions. This
destroy function is a perfect
example: I was not sure yet,
which objects I want this orb
to be able to destroy. Sure, I
ended up with the destroyer
orb only being capable of
destroying spheres. There-
fore, I could have also simply
cast the other game object to
a sphere class and then call

the destroy function of the
sphere class. But if new game
objects would have been
added during development,
which are supposed to be
destructible, I do not want to
add another cast attempt to
the function each and every
time. That is where blueprint
interfaces are coming in
handy. The same blueprint
interface can be added to any
blueprint class type. Therefore
it is possible to call desired
functions of different class
types through the same blue-
print interface. In my explicit

example, I have created a
generic blueprint interface.
This interface has a function
called ‘Destroy’. I added this
interface to the default sphere
blueprint class. In this default
sphere blueprint class it is set
up in a way, that the interface
function ‘Destroy’ will call
the sphere to be destroyed.
I can now call the interface
‘Destroy’ function from the
destroyer orb, without it
having to know what class it
wants to destroy. Whenever I
want another game object to
be destroyable by the destroy-

er orb, I just add exactly this
generic blueprint interface to
this game object and set it up
in a similar way.

Default Orb: Gravity Orb

For the gravity orb I was
overriding the physics set-
tings, so that global gravity is
being applied. I also changed
its behavior in a way, that the
Activate function will not
be called after it has been
thrown and that it will not
be destroyed when the de-

stroy function is being called.
It seems strange to have it
inherit traits from the de-
fault orb, when exactly those
traits just gets overridden.
But in my opinion, it is still
belonging to the category of
orbs and I rather have those
traits to be overridden, than
splitting it up to a new class.
It is also not unlikely, that
during development, deci-
sions are made to add other
crucial functions to the base
class. Taking care of the right
dependencies can spare a lot
of work in a later stage.

Orb Spawner

The orb spawner major re-
sponsibility is to supply the
player with orbs to throw. It
holds information about the
orb type, the orbs count and
latest offered orb. Whenev-
er the latest offered orb was
thrown and the player has
orbs left, it will automatically
call the function to spawn a
new one.

Base Station

The base station has no real
functionality other than
holding widget, holomap and
orb spawners in one place. It
is referenced in the game state
blueprint and therefore allows
for easy access of its child
components from all other
blueprint classes.

	 Work Process - Execution

																	 15

Obstacle

Obstacles are all the game
entities, that can be placed in
maps. They have a mesh and
a collider. They call a destroy
function on the other collid-
ing object. Looking back, I
would probably would have
add another layer of two ob-
stacle types. Meaning obsta-
cles splitting up into “Hard
Obstacles” and “Soft Obsta-
cles”, where the hard ones
would then carry the function
to call the destroy function of
the colliding object, while the
soft one would not. If I would
now want to add obstacles
which do not destroy the col-
liding object, I would have to
override this function. These
are the examples, where I see
room for improvement on
my side in terms of planing
dependencies.

Obstacles: Default Sphere

The default spheres main
function is to apply gravita-
tion forces depending on the
size and distance to each and
every orb. It looks at its own
size and runs it through some
equations, which results in
gravitation force and max-
imum effective distance. It
has access to all active orbs,
through the global orbs array,
which was mentioned in the
section of the default orb. It

evaluates for each orb, wheth-
er it is in its effective range
and if so, it will apply gravita-
tion force depending on the
distance within the effective
range. The applied force starts
from almost zero and goes
slightly exponential to the
center of the sphere.

Default spheres have a bool-
ean variable called active and
an integer variable called
‘groupIndex’. If this is set to 1
or higher, they will search for
other spheres with the same

‘groupIndex’ and remember
them. Whenever an active, in-
terconnected sphere is being
hit, it will toggle its own and
others active status.

Default Sphere: Target Sphere

I have created a stage blue-
print interface . This interface
is constantly informing the
current stage about all events.
This way the stage knows,
when an orb is picked up,

Work Process - Execution																

 	16

put back, thrown or colliding
with something. The Target
Sphere enables the stage to
distinguish, whether a default
or a target sphere was hit.

Default Sphere: Trigger Sphere

The trigger sphere adds an-
other sphere type to inform
the stage on hit. In addition
to that, it destroys itself after
a hit.

Default Sphere: Alphabet
Sphere

The alphabet sphere replaces
the sphere mesh with an three
dimensional letter mesh. For
that I have converted fonts
into meshes using the text op-
tion in Autodesk Maya. There
is also an additional function
added, which appends the
corresponding letter to the
gamer tag string on hit.

Default Sphere: Delete Sphere

The delete sphere has a func-
tion which deletes the last
character of the gamer tag
string on hit

Default Sphere: Save Sphere

The save sphere calls the Save
High Score function of the al-
phabet stage blueprint on hit. Obstacles: Wall

Walls are simple obstacles
with a cube as mesh.

	 Work Process - Execution

																	 17

Mover

The mover can be placed into
the map along with target
points. It will first attach all
obstacles with the same group
index to itself and then move
along the set up target points.
This way, it is possible to
make planets or walls move
in a specific pattern. For that,
I have been adding a Moving
Group Index variable to the
obstacles class.

Volume

The volume is a collider,
which affects the behavior
of orbs, while they are over-
lapping. It removes the orb
from the global array list on
overlap enter, which effec-
tively removes the reference
of the orb for all spheres and
results in no gravitation to be
applied.

Widget

The widget constantly pulls
data from the game state
blueprint and displays infor-
mation accordingly.

Stage

Stage blueprints can be seen
as container with all informa-
tion of the current stage. They
handle all stage related opera-
tions, like for example adding
lives and orbs or triggering
text messages and events.

Stage: Default Stage

There are sixteen different
default stage blueprints in
this game, each representing
an unique stage in the game.
(Starting from stage 0 as the
title screen) Each stage is a
child class of the stage base
blueprint but are then indi-
vidually set up to pose differ-
ent problems for the player
to solve. Each default stage
stores all level elements. From
the layout to what action trig-
gers which behavior.

Stage: Alphabet Stage

The alphabet stage has addi-
tional functions to be able to
enter a gamer tag and handle
the high scores. This includes
the function to load and save
game data containing high
scores. Following operations
are called in this given or-
der, when saving a new high
score: Add new high score
to high score array, sort high
score array according to the
score from highest to lowest,
cull high score array to the
length of maximum ten items.

Work Process - Execution																

 	18

The high score array is an
array of a custom struct. One
struct contains gamer tag
(string) and score (integer).

Stage: Game Over Stage

The game over stage has ad-
ditional functions to load and
set the visibility of the high
scores in the widget. It will
also trigger the credits text
and automatically load back
into stage 0, which is the title
screen, after a set time period.

Holomap

The holomap does not hold
any functionality, other
being a position in space.
It represents the anchor
from where the miniature
holographic duplicates are
replicated. This allows the
holomap to be moved to any
desired location.

The miniature replications
are handled by all of the big
counterparts themselves.
Each obstacle item holds a
reference to the holomap and
updates a miniature version
of itself onto this location.

Game State

The game state holds infor-
mation about all globally
relevant variables. I used the
game state for this purpose,
because it is easy accessible

through the Get Game State
node. It also checks, wheth-
er game objects, which are
tagged as necessary to beat
the stage, are still available.
It will call the stage to fail if
it thinks, that there is no way
to beat the stage is anymore.
(For example in case all nec-
essary orbs are running out.)

Looking back, I am not
satisfied with having this
conditional check run by
the game state blueprint and
would probably rather let the
stage blueprint handle those
checks. Because this check
is in the game state, it will
be applied on all stages. This
might cause a problem, when
I decide to expand the game
with completely different
types of stages, which require
another form of check.

Right now there is an array
in the game state with all the

playable stages listed. The
game state will cycle through
this array accordingly and
load up the desired stages. It
is a neat feature, but I would
like to move this feature
to another blueprint class.
(e.g. level manager blueprint
class) The score in the widget
counts up instead of being set
directly to the new score. This
counting up is also handled
by the game state. Yet again,
I am not satisfied with this
decision and would move this
little function to the widget
itself.

I am aware of the fact, that I
abused the game state blue-
print to handle too many
different aspects of the game.
The game state blueprint is
untidy because of that. I will
keep the game state blueprint
as a data holding blueprint
only in the future.

	 Work Process - Execution

																	 19

Review
_

Pitfalls & Best Practices · Useful Tips · Conclusion

Review - Pitfalls & Best Practices															

 	22

~Pitfalls & Best Practices~

During the development of
this project, I was facing a lot
of problems to solve. This sec-
tion will go into more detail
about the major problems and
pitfalls I have encountered
and how I was going about
dealing with them. A lot of
the following guidelines are
based on common sense, but
due to their importance I felt
like including them anyways.

Keeping the Project Clean

One of the major efforts went
into keeping clean and log-
ical dependencies of classes
and functions. Nonetheless,
I ended up with some untidy
blueprint classes carrying
functions, which do not
belong to them. I also felt
unsure about the granularity
of the devisions. There are

no universal applicable rules
on how to divide classes into
subclasses. This often varies
from project to project.

Best Practices:

I believe, that one can prac-
tice to get a better feeling for
this by carefully planing, con-
stantly reviewing and reflect-
ing over the current but also
previous projects. Having this
awareness will help to make
the right decision next time.

I also suggest to put effort
into keeping the event graph
clean. Try to have everything
in descriptive functions
instead. This will improve the
readability of the class and its
functions. Reading a massive
event graph is quite a chal-
lenge and often times confus-
es oneself.

Functions, which need to run
every tick for a period of time
can be run by timelines. Do
not plug them into event tick,
unless they need to be con-
stantly running.

The most obvious one is to
use comment boxes. I myself,
often catch me, underutilizing
this option.

Multiple 3D Widgets

I have made some bad expe-
rience with multiple widgets.
The editor kept on crashing
occasionally without any
identifiable pattern. Crash-
es were not only occurring
during ‘Play in Editor’ (PIE),
but also when idling in the
editor at any given time. It
could happen within one
hour after opening the proj-
ect or only after half a day
of work. I got very paranoid
during this time frame and

started to work extra slow and
carefully. This was particular
frustrating and it took me
a few days to finally narrow
down the problem to the wid-
gets. I probably lost 4 days of
work, because of this issue.

Best Practice:

I probably could have lost
more days on this issue, if I
had not set up a revision con-
trol system. It helped me to
keep a history of all changes
made over the course of the
project and allowed me to roll
back to a previous revision
whenever an unidentifiable
error occurred. In this case,
it was odd, because I got no
information on what caused
the crash and had to roll back
to an earlier version several
times, until I reached a ver-
sion before I have added the
widget.

Review Review - Pitfalls & Best Practices

																	 23

Packaging the Project

I know, that many students,
including me, had some prob-
lems with packaging projects
in the past. I do occasionally
try to package my project
during development, to see
whether it fails or finishes.
I would advise to do this
frequently. At the beginning
of this project the chances of
a successful cooking process
was quite low. It can be very
bothering to not know, how
much additional time will be
needed at the end to solve all
packaging problems. Espe-
cially when it comes to hitting
certain deadlines, it can be-
come a serious problem.

Best Practice:

I started to always keep the
output log window open on a
second screen. This allowed

me to keep an eye on it at
any given time during de-
velopment. I realized, that I
have overseen errors, which
are not being displayed in
the debug window. This way
I was able to solve all minor
errors and warnings, before
they evolved into something
big. After I have adapted this
habit, I suddenly did not have
any problems with packaging
the project anymore. It just
always works.

~ Lessons Learned ~

With every project I gain
experience and learn valuable
lessons. Here are some of
which I would like to high-
light, because I personally
find them useful.

Call to Parent Function

Adding an event node from
the parent class to the child
class will override the parent
event. In order to run both
(child and parent event),
right click on the event node
and select ‘add call to parent
function’. This will add a node
to the child class, which al-
lows the child class to call the
parent event of this particular
event.

Blueprints Interfaces

“A Blueprint Interface is a
collection of one or more
functions - name only, no
implementation - that can be
added to other Blueprints.
Any Blueprint that has the In-
terface added is guaranteed to
have those functions.” (UE4
documentation)

Blueprint Interfaces are a
great way to let blueprints
share and send data to each
other, especially if casting to a
specific blueprint class be-
comes inconvenient.

Game State

Game State is a great class to
monitor the current state of
the game and have this infor-
mation accessible for all other
blueprint classes. It is easy to
access through the ‘Get Game
State’ function.

Enums and Structs

Although this is a very ob-
vious one, I do find myself
underutilizing custom enums
and custom structs. It often
helps to use custom enums

Review - Lessons Learned																

 	24

and structs to improve the
clarity of a project. For ex-
ample: Instead of using and
integer variable called, “orb-
TypeIndex”, use an custom
enum called “enum_Orb-
Types” and add descriptive
items.

Property Matrix

When properties of multiple
objects, which are sharing
these properties need to be
edited, they can all be edited
at the same time using the
Property Matrix. Select all
desired objects, right click
on them, hover over Asset
Actions, click on ‘Bulk Edit
via Property Matrix...’ This
feature can handle thousands
of objects at the same time.
(UE4 documentation)

~ Conclusion ~

There are still a lot of areas
in which the game can be
improved. Further devel-
opment would include an
audiovisual overhaul, as well
as further balancing of the
orb movement. Although a
lot of care has been taken for
proper planing, the code still
got untidy in some places. I
found it difficult to keep the
event graph tidy. Especially
the game state blueprint, was
suffering as a multi task class,
due to its easy access from
other blueprints. Further-
more, I had a hard time to
decide on the granularity of
creating subclasses. Too little
would end up in huge chunks,
which are potentially less tidy,
while too many can cause
unnecessary overhead.

I know now where I can im-
prove and believe, that I have
reached most of my goals
in setting up a foundation,
which can be easily extended
for further development.

I am certain, that this project
helped me to improve my
workflow for future develop-
ment and that I will be even
more aware of keeping a clean
structure. I was able to over-
come all obstacles in the way
and execute the development
without any major hiccups
by following my best practice
rules.

I believe, that this project
posed a good practice espe-
cially because I continuously
reflected over my decisions.
This experience will carry
over to future projects and
help me to make batter deci-
sions.

Because of the focus on
establishing a solid frame-
work, adding more content in
form of extra stages became
very easy. Due to the modu-
lar system it is purely about
arranging the layout, setting
few triggers and adding it
to the level array. This cir-
cumstance allows for more
time being spent in actually
designing levels rather than
solving implementation prob-
lems. I believe, that this fact is
noticeable, while playing my
game. I can now already build
a lot of more content by just
using the current available
modules, but also adding new
modules and features should
be fairly easy.

Considering the amount of
quality content I have been
able to generate in this short
amount of time, I would mark
this project as a success.

	 Review - Conclusion

																	 25

Appendix
_
Table of Figures - References - Attachments - Declaration on Oath

Appendix - Table of Figures															

 	28

~ Table of Figures ~

Figure 1	 Oculus Rift Headset .. 05

Figure 2	 Oculus Rift Motion Controllers 05

Figure 3	 Oculus Rift Motion Tracker 05

Figure 4	 Timeline .. 08

Figure 5	 Sagittarius 01 .. 10

Figure 6	 Sagittarius 02 .. 10

Figure 7	 Game Loops ... 11

Figure 8	 Dependencies ... 12

Figure 9	 Pawn 02 ... 12

Figure 10	 Stage 01 ... 13

Figure 11	 Stage 02 ... 13

Figure 12	 Stage 03 ... 13

Figure 13	 Particle Effects 01 .. 13

Figure 14	 Stage 04 ... 14

Figure 15	 Scoring 01 ... 14

Figure 16	 Green Orb 01 ... 14

Figure 17	 Alphabet Stage 03 .. 14

Figure 18	 Pawn 03 ... 15

Figure 19	 Stage 08 ... 15

Figure 20	 Stage 12 ... 15

Figure 21	 Stage 06 ... 16

Figure 22	 Stage 11 ... 16

Figure 23	 PlanetGroup 01 .. 16

Figure 24	 Stage 08 ... 17

Figure 25	 Stage 12 ... 17

Figure 26	 Stage 06 ... 17

Figure 27	 Stage 11 ... 17

Figure 28	 Stage 05 ... 18

Figure 29	 Alphabet Stage 01 .. 18

Figure 30	 Save Name 01 ... 18

Figure 31	 Stage 15 ... 19

	 Appendix - Sources

																	 29

~ Sources ~
Figure 1 on page 05:

	 Rift [Official Oculus Rift website]. Retrieved from https://www.oculus.com/rift/

Figure 2 on page 05:

	 Rift [Official Oculus Rift website]. Retrieved from https://www.oculus.com/rift/

Figure 3 on page 05:

	 Rift [Official Oculus Rift website]. Retrieved from https://www.oculus.com/rift/

Figure 5 on page 10:

	 Prosser, G. (2017, January 1st). Sagittarius [Game entry at itch.io]. Retrieved from https://gprosser.itch.io/sagittarius

Figure 6 on page 10:

	 Prosser, G. (2017, January 1st). Sagittarius [Game entry at itch.io]. Retrieved from https://gprosser.itch.io/sagittarius

Quote 1 on page 24:

	 Blueprint Interface [Online documentation]. Retrieved from https://docs.unrealengine.com/latest/INT/Engine/Blueprints/UserGuide/Types/Interface/

Quote 2 on page 25:

	 Property Matrix [Online documentation]. Retrieved from https://docs.unrealengine.com/latest/INT/Engine/UI/PropertyMatrix/

Appendix - Declaration on Oath															

 	30

	 Appendix - Declaration on Oath

																	 31

Eidesstattliche Versicherung

Hiermit erkläre ich an Eides Statt, dass ich die vorliegende Arbeit selbständig und nur unter Zuhilfenahme
der ausgewiesenen Hilfsmittel angefertigt habe. Alle aus fremden Quellen im Wortlaut oder dem Sinn
nach entnommenen Aussagen sind durch Angaben der Herkunft kenntlich gemacht.

Die Arbeit wurde bisher keiner anderen Prüfungskommission vorgelegt und auch nicht veröffentlicht.

18.09.2017

Hien Quy Tran

Acknowledgment
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
My Sister · Special Thanks

Acknowledgment																	

 	34

	 Acknowledgment

																	 35

~ I would like to express my very great appreciation to my sister for her support during the course of my studies. ~

Acknowledgment																	

 	36

Special Thanks to:

My Parents
Grita Balkute

Susanne Brandhorst
Thomas Bremer

Fabian Golz
Julien Heimann
Mona Leinung

Nico Paech
Svetlana Sobcenko

	 Acknowledgment

																	 37

